Abstract
This paper studies the high performance robust motion control of an epoxy core linear motor, which has negligible electrical dynamics due to the fast response of the electrical subsystem. A discontinuous projection based adaptive robust controller (ARC) is first constructed. The controller theoretically guarantees a prescribed transient performance and final tracking accuracy in general, while achieving asymptotic tracking in the presence of parametric uncertainties. A desired compensation ARC scheme is then presented, in which the regressor is calculated using the reference trajectory information only. The resulting controller has several implementation advantages such as less online computation time, reduced effect of measurement noise, a separation of robust control design from parameter adaptation, and a faster adaptation rate. Both schemes are implemented and compared on an epoxy core linear motor. Extensive comparative experimental results are presented to illustrate the effectiveness and the achievable control performance of the two ARC designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.