Abstract

In this article, an adaptive robust iterative learning control is developed to solve the trajectory tracking problem of a parallel Delta robot performing repetitive tasks and subjected to external disturbances. The proposed control scheme is composed of an adaptive proportional–derivative controller to increase the convergence rate, a proportional–derivative-type iterative learning control to enhance the tracking performances through the repetitive trajectory as well as a robust term to compensate the repetitive and nonrepetitive disturbances. The practical assumption of alignment condition is introduced instead of the classical assumption of resetting conditions. The asymptotic convergence is proved using Lyaponuv analysis, and it is shown that the tracking error decreases through the iterations. Simulation and experiments are performed on a Delta robot to demonstrate the effectiveness and the superiority of the proposed controller over the traditional iterative learning control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.