Abstract

An adaptive robust control that does not need sophisticated plant modeling work is proposed for precise output positioning of a servo system in the presence of both friction and deadzone nonlinearities. It is difficult to achieve effective motion control by traditional linear control methodology for these types of nonlinearities, without the aid of a proper compensation scheme for nonlinearity. In this study, dynamic friction is modeled by a Tustin friction model, and inverse deadzone method is adopted to compensate deadzone effect. The adaptive laws of the unknown system dynamic parameters, friction and deadzone, are derived. Furthermore, a robust control method with funnel control is proposed to compensate for unmodeled and estimation errors. The boundedness and convergence of the closed-loop system are ensured by a Lyapunov stability analysis. The performance of the proposed control scheme is verified through experiments on the XY table servo system and the robotic manipulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.