Abstract
The Proton Exchange Membrane Fuel Cell (PEMFC) air supply system takes on the characteristics of external disturbances and uncertain parameters, which is difficult to achieve accurate modeling and stability control. In this paper, an adaptive robust controller based on type-2 fuzzy logic systems (T2-FLS) is proposed to control the oxygen excess ratio (OER) of PEMFC air supply system. The controller does not need the unmodeled dynamics, which can be approximated by adaptive T2-FLS whose adaptive parameters are derived based on Lyapunov theory. The stability analysis shows that the system tracking error is uniform ultimate bounded. Finally, the practicability and feasibility of controller are validated by numerical simulation and Hardware-In-Loop (HIL) experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.