Abstract

Cost estimation is one of the most critical activities in software life cycle. In past decades, a number of techniques have been proposed for cost estimation. Linear regression is yet the most frequently applied method in the literature. However, a number of studies point out that linear regression is prone to low prediction accuracy. The low prediction accuracy is due to a number of reasons such as non-linearity and non-normality. One less addressed reason is the multi-collinearities which may lead to unstable regression coefficients. On the other hand, it has been reported that multi-collinearity spreads widely across the software engineering datasets. To tackle this problem and improve regression's accuracy, we propose a holistic problem-solving approach (named adaptive ridge regression system) integrating data transformation, multi-collinearity diagnosis, ridge regression technique and multi-objective optimization. The proposed system is tested on two real world datasets with the comparisons with OLS regression, stepwise regression and other machine learning methods. The results indicate that adaptive ridge regression system can significantly improve the performance of regressions on multi-collinear datasets and produce more explainable results than machine learning methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.