Abstract
We introduce a method for obtaining analytic approximations to the evolution of Markovian open quantum systems. It is based on resumming a generalized Dyson series in a way that ensures optimal convergence even in the absence of a small parameter. The power of this approach is demonstrated by two benchmark examples: the spatial detection of a free particle and the Landau-Zener problem in the presence of dephasing. The derived approximations are asymptotically exact and exhibit errors on the per mill level over the entire parameter range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.