Abstract

The euryhaline fish, the spotted scat (Scatophagus argus), is exceptional for its ability to tolerate rapid fluctuations in salinity. To better understand fish osmoregulation and enable more precise analyses of specific features of adaptive responses to the osmotic stress in fish, a S.argus kidney-derived cell line (SK) was developed and subcultured for more than 70 passages. The cells were mostly fibroblast-like, with a normal diploid karyotype (2n=48). A low-osmolarity-adapted SK cell line (SK-la) was induced by growth in a hypotonic solution (150mOsm). Effects of different osmotic stresses (150, 300 and 450mOsm) on cell growth, cell morphology, cell volume changes and cell damage in SK, SK-la and CIK (a kidney-derived cell line from freshwater grass carp) cells were studied. These were compared by use of microscopic observation, flow cytometry and a Na-K-ATPase (NKA) assay. SK cells became smaller and grew rapidly in response to hypotonic stress (150mOsm), and exhibited no visible morphological changes in response to hypertonic stress (450mOsm). SK-la grew well by moderate hypertonicity (300mOsm) but depressed in severe hypertonicity (450mOsm), the number of unhealthy SK-la cells rose as osmolarity increased. In contrast, CIK cells became unhealthy with anisotonic challenge. The NKA activities of SK and CIK cells were assayed after exposure to anisotonic conditions, and rapid decreases were detected immediately except SK cells which were not affected in hypotonicity. Unlike in SK and CIK, an increase following a down-regulation of NKA activity was observed in SK-la cells upon moderate hypertonic stress. These results suggested that SK and SK-la cells had stronger osmoregulatory capacity than CIK cells, and provided new insights on the osmosensing and osmotic adaption in euryhaline fish kidney.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call