Abstract

This study deals with two kinds of activity-dependent phenomena in the somatosensory cortex of adult monkeys, both of which may be related: (1) mutability of representational maps, as defined electrophysiologically; (2) alterations in expression of genes important in the inhibitory and excitatory neurotransmitter systems. Area 3b of the cerebral cortex was mapped physiologically and mRNA levels or numbers of immunocytochemically stained neurons quantified after disrupting afferent input peripherally by section of peripheral nerves, or centrally by making lesions of increasing size in the somatosensory thalamus. Survival times ranged from a few weeks to many months. Mapping studies after peripheral nerve lesions replicated results of previous studies in showing the contraction of representations deprived of sensory input and expansion of adjacent representations. However, these changes in representational maps were in most cases unaccompanied by significant alterations in gene expression for calcium calmodulin-dependent protein kinase isoforms, for glutamic acid decarboxylase, GABA A receptor subunits, GABA B receptors, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or N-methyl- D-aspartate (NMDA) receptor subunits. Mapping studies after lesions in the ventral posterior lateral nucleus (VPL) of the thalamus revealed no changes in cortical representations of the hand or fingers until >15% of the thalamic representation was destroyed, and only slight changes until approximately 45% of the representation was destroyed, at which point the cortical representation of the finger at the center of a lesion began to shrink. Lesions destroying >60% of VPL resulted in silencing of the hand representation. Although all lesions were associated with a loss of parvalbumin-immunoreactive thalamocortical fiber terminations, and of cytochrome oxidase staining in a focal zone of area 3b, no changes in gene expression could be detected in the affected zone until >40–50% of VPL was destroyed, and even after that changes in mRNA levels or in numbers of GABA-immunoreactive neurons in the affected zone were remarkably small. The results of these studies differ markedly from the robust changes in gene expression detectable in the visual cortex of monkeys deprived of vision in one eye. The results confirm the view that divergence of the afferent somatosensory pathways from periphery to cerebral cortex is sufficiently great that many fibers can be lost before neuronal activity is totally silenced in area 3b. This divergence is capable of maintaining a high degree of cortical function in the face of diminishing inputs from the periphery and is probably an important element in promoting representational plasticity in response to altered patterns of afferent input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.