Abstract

The combined effects of temperature (8, 12, 14, 17, 20, 22 and 25°C) and a salinity decrease from 36 to 12‰ on the development of the sea urchin Echinocardium cordatum (Pennant) were studied. Embryonic development proved to be the process most vulnerable to a salinity decrease. It was completed successfully at 8–20°C within a narrow salinity range of 36–28‰ Larvae at the most resistant stage, the blastula, survived at 12–22°C and a salinity of 36–18‰. Larvae at the most sensitive stage, pluteus I with the first pair of arms, died even in a favorable environment, a temperature of 17–20°C and a salinity of 34–28‰. That may be related to qualitative alterations during skeleton formation and to transition to phytoplankton feeding. The resistance of larvae to variations in environmental factors gradually increased in the pluteus II and III stages; however, it significantly decreased before the settling of the larvae. Larvae that were 37 days old survived at a temperature of 14–20°C within a salinity range of 36–22‰ and at 22 and 25°C, they survived at a salinity of 36–24‰; however, all the larvae became abnormal at 25°C. The larvae settled earlier on sand inhabited by adult individuals of E. cordatum than on sand from other locations, and they settled faster at 20–25°C, than at 14 and 17°C. The juveniles, if lacking an opportunity to burrow in the sand, died within 14 days after settling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.