Abstract

The current study investigated the efficacy of individualizing exercise intensity according to anaerobic power reserve (APR) on hormonal, physiological, and performance adaptations in athletes with different profiles. Sixteen highly-trained male rowers (age = 22 ± 3 years, height = 183 ± 6cm, weight = 83 ± 7kg, body fat = 11 ± 2%, experience = 12 ± 5 years) were randomized to a high-intensity interval training consisting of 2 × (6, 6, 8, 8, 10, 10 repetitions from 1st to 6th week, respectively) × 60s intervals using a rowing ergometer at ∆%30 APR (APR∆%30) or the same sets and repetitions at 130% maximal aerobic power (MAP130%). In both groups, relief intervals were set at 1:1 with 3min of rest between sets. On four occasions separated by 24h recovery, participants attended the laboratory to assess 2000-m rowing ergometer performance, maximal oxygen uptake (V̇O2max) and related physiological adaptations, and hormonal parameters. Significant increases were observed in 2000-m performance, V̇O2max, ventilation at V̇O2max, first and second ventilatory threshold, MAP and maximal sprinting power (MSP), total testosterone, and testosterone to cortisol ratio in response to 6weeks of APR∆%30 and MAP130% protocols. The coefficient of variation (inter-subject variability) in the adaptive response of cardiorespiratory parameters to HIIT performed using the APR∆%30 protocol was lower than those of the MAP130% group. However, this is not the case for hormonal changes. Prescribing HIIT based on an athlete's APR may help to create a more consistent level of the mechanical and physiological stimulus relative to the athlete's capacity, potentially leading to more similar adaptations across athletes with varying profiles. Mechanisms influencing total testosterone are multifactorial and are not affected by this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.