Abstract

For design problems involving computation-intensive analysis or simulation processes, approximation models are usually introduced to reduce computation lime. Most approximation-based optimization methods make step-by-step improvements to the approximation model by adjusting the limits of the design variables. In this work, a new approximation-based optimization method for computation-intensive design problems - the adaptive response surface method(ARSM), is presented. The ARSM creates quadratic approximation models for the computation-intensive design objective function in a gradually reduced design space. The ARSM was designed to avoid being trapped by local optima and to identify the global design optimum with a modest number of objective function evaluations. Extensive tests on the ARSM as a global optimization scheme using benchmark problems, as well as an industrial design application of the method, are presented. Advantages and limitations of the approach are also discussed

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.