Abstract

In this study, the zone-based hedging rule, which is the main operating policy adopted from multipurpose reservoirs in Korea is adjusted to reflect the multi-year droughts caused by climate change. Annual synthetic inflow series with different magnitudes of long memory were generated using the autoregressive fractional integrated moving average (ARFIMA) model. The generated inflow series were then disaggregated into 10-day series and utilized as input variables to derive the alternative hedging rules. The alternative hedging rules from this study were used in adaptive reservoir management by newly updated information. Finally, the performance of the suggested policy is measured in terms of frequency and magnitude under the historical inflow series. As a result, adaptive reservoir management demonstrated improvements in the following terms of the frequency of critical failures (water deficit ratio greater than 30%): 6.14% of the simulation period in the status quo (SQ) policy, and 2.99% in the adaptive management. However, the overall reliability of the reservoir during the simulation horizon was better when operated with the SQ policy (41.19%) than the results from adaptive management (26.42%). Because this result is in a good agreement with the original objective of the hedging rules, the adaptive policy suggested in this study holds promise and may be utilized in further reservoir management with an increase of potential drought risk from climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.