Abstract

We introduce an innovative algorithm that is capable of suppression of strong azimuth ambiguities in single-look complex (SLC) synthetic aperture radar images, to be used both for detected products and for interferometric surveys. The algorithm exploits a band-pass filter to select that portion of the azimuth spectrum that is less influenced by aliasing, the one that corresponds to the nulls in the replicated azimuth antenna pattern. The selectivity of this filter adapts locally depending on the estimated ambiguity intensity: the filter is more selective in the presence of strong ambiguities and becomes all-pass in absence of ambiguities. The design of such filter frames in the Wiener approach with two different normalization options, depending on the use of the SLC image, either for getting multilook averaged detected products or for interferometric applications. Preliminary results achieved by processing ENVISAT Advanced Synthetic Aperture Radar sensor data are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call