Abstract

The increasing interests and recent advancements in artificial intelligence and machine learning have significantly accelerated the development of novel techniques for the state estimation of batteries in electrified vehicles’ battery management systems (BMSs). Determining the remaining capacity among the several BMS states is crucial for ensuring the safe and stable functioning of an electric vehicle. This paper proposes an adaptive estimator for the remaining capacity of lithium-ion batteries, leveraging a Genetic Algorithm (GA)-tuned random forest (RF) regressor. The estimator is designed to function effectively under varying thermal conditions. The optimization of critical parameters, namely, the number of estimators (n-estimators) and the minimum number of samples per leaf (min-samples-leaf), is a focal point of this study to enhance model accuracy and robustness. The model effectively captures the battery’s dynamic behavior and inherent non-linearity. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) achieved during testing demonstrate promising accuracy and superior prediction. The results demonstrated significant improvements in state of charge (SOC) estimation accuracy. The proposed GA-optimized RF model achieved an MAE of 0.0026 at 25 °C and 0.0102 at −20 °C, showing a 41.37% to 50% reduction in the MAE compared to traditional random forest models without GA optimization. The RMSE was also reduced by 18.57% to 31.01% across the tested temperature range. These improvements highlight the model’s ability to accurately estimate the SOC in varying thermal conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.