Abstract

Power system faults can often result in excessively high currents. If sustained for a long time, such high currents can damage system equipment. Thus, it is desirable to operate the relays in the minimum possible time. In this paper, a busbar splitting approach is used for adaptive relay setting and co-ordination purposes for a system integrity protection scheme (SIPS). Whenever a fault occurs, the busbar splitting scheme splits a bus to convert a loop into a radial structure. The splitting schemes are chosen such that the net fault current is also reduced. Busbar splitting eliminates the dependency upon minimum breakpoints set (MBPS) and reduces the relay operating time, thus making it adaptive. The proposed methodology is incorporated into the IEEE 14-bus and IEEE 30-bus systems with single and multiple fault conditions. The modeling and simulation carried out in ETAP, and the results of the proposed busbar splitting-based relay co-ordination are compared with the MBPS splitting-based relay co-ordination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call