Abstract
Early detection and characterization of breast lesion are important for a better and effective treatment of breast cancer. In this paper, four different adaptive region growing image segmentation algorithms are compared. In fact, seed selection was a vital step in the success of region growing methods, so, better schemes for seed selection methods are proposed, namely, joint probabilistic seed selection (JPSS) and Generalised simulated annealing (GSA) based seed selection. The proposed region growing methods namely Fuzzy Region Growing (FRG) and Neutrosophic Region Growing (NRG) are integrated as JPSS-FRG and GSA-NRG frameworks. Another two methods are Scale Invariant Region growing (SiRG) and Fuzzy Neutrosophic Confidence Region growing (FNCRG). The results showed that FNCRG algorithm increases breast cancer detection rate on MRI breast images with the maximum of 93% is achieved. SiRG algorithm improves the true positive rate by 13% compared to existing methods. Further, GSA-NRG makes better segmentation accuracy by 9% and true positive rate by 12%. Also, JPSS-FRG algorithm enhances segmentation accuracy by 24% and improving the true positive rate by 27% compared to Region Growing-Cellular Neural Network (RG-CNN) and Seeded Region Growing-Particle swarm optimization (SRG-PSO) methods respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.