Abstract

Quiescence of myometrium contractile activity allows uterine expansion to accommodate the growing fetus and prevents preterm labor particularly during excessive uterine stretch in multiple pregnancy. However, the mechanisms regulating uterine response to stretch are unclear. We tested the hypothesis that prolonged uterine stretch is associated with decreased myometrium contractile activity via activation of TWIK-related K+ channel (TREK-1). Pregnant women at different gestational age (preterm and term) and uterine stretch (singleton and twin pregnancy) were studied, and uterine strips were isolated for measurement of contractile activity and TREK-1 channel expression/activity. Both oxytocin- and KCl-induced contraction were reduced in term vs preterm pregnancy and in twin vs singleton pregnancy. Oxytocin contraction was reduced in uterine segments exposed to 8 g stretch compared to control tissues under 2 g basal tension. TREK-1 mRNA expression and protein levels were augmented in Singleton-Term vs Singleton-Preterm, and in uterine strips exposed to 8 g stretch. The TREK-1 activator arachidonic acid reduced oxytocin contraction in preterm and term, singleton and twin pregnant uterus. The TREK-1 blocker l-methionine enhanced oxytocin contraction in Singleton-Term and twin pregnant uterus, and reversed the decreases in contraction in uterine strips exposed to prolonged stretch. Carboprost-induced uterine contraction was also reduced by arachidonic acid and enhanced by l-methionine. Thus, myometrium contraction decreases with gestational age and uterine expansion in twin pregnancy. The results suggest that prolonged stretch enhances the expression/activity of TREK-1 channel, leading to decreased myometrium contractile activity and maintained healthy term pregnancy particularly in multiple pregnancy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.