Abstract

AbstractWith the ubiquity of large‐scale computing resources has come significant attention to practical details of fast algorithms for the numerical solution of partial differential equations. Included in this group are the class of multigrid and algebraic multigrid algorithms that are effective solvers for many of the large matrix problems arising from the discretization of elliptic operators. Algebraic multigrid (AMG) is especially effective for many problems with discontinuous coefficients, discretized on unstructured grids, or over complex geometries. While much effort has been invested in improving the practical performance of AMG, little theoretical understanding of this performance has emerged. This paper presents a two‐level convergence theory for a reduction‐based variant of AMG, called AMGr, which is particularly appropriate for linear systems that have M‐matrix‐like properties. For situations where less is known about the problem matrix, an adaptive version of AMGr that automatically determines the form of the reduction needed by the AMGr process is proposed. The adaptive cycle is shown, in both theory and practice, to yield an effective AMGr algorithm. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.