Abstract

This paper proposes a robust reduced-rank scheme for adaptive beamforming based on joint iterative optimization (JIO) of adaptive filters. The novel scheme is designed according to the constant modulus (CM) criterion subject to different constraints. The proposed scheme consists of a bank of full-rank adaptive filters that forms the transformation matrix, and an adaptive reduced-rank filter that operates at the output of the bank of filters to estimate the desired signal. We describe the proposed scheme for both the direct-form processor (DFP) and the generalized sidelobe canceller (GSC) structures. For each structure, we derive stochastic gradient (SG) and recursive least squares (RLS) algorithms for its adaptive implementation. The Gram-Schmidt (GS) technique is applied to the adaptive algorithms for reformulating the transformation matrix and improving the performance. An automatic rank selection technique is developed and employed to determine the most adequate rank for the derived algorithms. A detailed complexity study and a convexity analysis are carried out. Simulation results show that the proposed algorithms outperform the existing full-rank and reduced-rank methods in convergence and tracking performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.