Abstract

Point cloud completion is an interesting and challenging task in 3D vision, which aims to recover complete shapes from sparse and incomplete point clouds. Existing completion networks often require a vast number of parameters and substantial computational costs to achieve a high performance level, which may limit their practical application. In this work, we propose a novel Adaptive efficient Recurrent Forward Network (ARFNet), which is composed of three parts: Recurrent Feature Extraction (RFE), Forward Dense Completion (FDC) and Raw Shape Protection (RSP). In an RFE, multiple short global features are extracted from incomplete point clouds, while a dense quantity of completed results are generated in a coarse-to-fine pipeline in the FDC. Finally, we propose the Adamerge module to preserve the details from the original models by merging the generated results with the original incomplete point clouds in the RSP. In addition, we introduce the Sampling Chamfer Distance to better capture the shapes of the models and the balanced expansion constraint to restrict the expansion distances from coarse to fine. According to the experiments on ShapeNet and KITTI, our network can achieve state-of-the-art completion performances on dense point clouds with fewer parameters, smaller model sizes, lower memory costs and a faster convergence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call