Abstract

SummaryBecause of unknown nonlinearity and time‐varying characteristics of electric scooter with V‐belt continuously variable transmission (CVT) driven by permanent magnet synchronous motor (PMSM), its accurate dynamic model is difficult to establish for the design of the linear controller in whole system. In order to conquer this difficulty and raise robustness, an adaptive recurrent Chebyshev neural network (NN) control system is proposed to control for PMSM servo‐drive electric scooter with V‐belt CVT under lumped nonlinear external disturbances in this study. The adaptive recurrent Chebyshev NN control system consists of a recurrent Chebyshev NN control and a compensated control with estimation law. In addition, the online parameters tuning methodology of the recurrent Chebyshev NN and the estimation law of the compensated controller can be derived by using the Lyapunov stability theorem. Moreover, the two optimal learning rates of the recurrent Chebyshev NN based on a discrete‐type Lyapunov function are proposed to guarantee the convergence of tracking error. Finally, comparative studies are demonstrated by experimental results in order to show the effectiveness of the proposed control scheme. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call