Abstract
AbstractReal-time surface rendering of large-scale molecular models such as a colon bacillus requires a great number of polygons to be displayed on a display device. Since a long latency of display and manipulation is fatal in maintaining presence in a virtual environment, high performance computing power and high quality graphical components are required to exercise real-time rendering of such a large-scale molecular model. We propose an algorithm which enables a PC level computer to render and display large-scale molecular models in real-time. The proposed algorithm adaptively visualizes large-scale molecular models. We tested our algorithm with molecular models of which polygons range from 533,774 polygons to 2,656,246 polygons. Our experiments showed that frame rates of displaying and manipulating the models ranged from 17.85 to 55.64 frames-per-second. The frames rates are 4.3 to 6.9 times higher than those of the models which are obtained using a conventional system. Our system enables biologists to display and manipulate large-scale molecular models in real-time which could not be done fast enough to be used in a virtual environment using the conventional systems.KeywordsFrame RateGraphic Processing UnitCritical PartGraphic CardPolygon MeshThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.