Abstract

In this paper, the position tracking control with finite-time convergence has been studied for a class of nonliear uncertain robot manipulators. Radial basis function neural network (RBFNN) based adaptive control is designed to compensate for the effect of the unknown dynamics. To achieve the finite-time convergence of both trajectory tracking error and RBFNN learning error, barrier Lyapunov functions (BLFs) and and filtering techniques are employed to design a performance function and a tracking error region to ensure position tracking error converge to a pair of specified bounds in a finite time. The effectiveness and efficiency of the proposed control method is tested and verified by simulation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.