Abstract

To enhance the detection efficiency in eddy current pulsed thermography, an adaptive feature extraction algorithm for defect identification is developed in this paper. The proposed algorithm involves four stages, namely, the thermal image segmentation, the variable interval search, the distance correlation clustering analysis and the between-class distance decision making. The transient thermal responses (TTRs) with similar characteristics are collected into one data block. The thermal image segmentation and variable interval search can help reduce the repetitive calculation in defect identification by choosing local optimums in each data block. The global optimum that has the largest sum of the between-class distance, is derived by first classifying the local optimums and then calculating the correlation distance of the thermal responses with the center points of each class. Finally, the TTRs with the largest between-class distance are regarded as the typical ones which can be used to identify the discriminative defect features of infrared image sequence. Finally, the comparison experiments are carried out to demonstrate the effectiveness and advantages of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.