Abstract
SummaryThis paper proposes an original adaptive refinement framework using radial basis function–generated finite differences method. Node distributions are generated with a Poisson disc sampling–based algorithm from a given continuous density function, which is altered during the refinement process based on the error indicator. All elements of the proposed adaptive strategy rely only on meshless concepts, which leads to great flexibility and generality of the solution procedure. The proposed framework is tested on four gradually more complex contact problems. First, a disc under pressure is considered and the computed stress field is compared to the closed‐form solution of the problem to assess the behaviour of the algorithm and the influence of free parameters. Second, a Hertzian contact problem is studied to analyse the proposed algorithm with an ad hoc error indicator and to test both refinement and derefinement. A contact problem, typical for fretting fatigue, with no known closed‐form solution is considered and solved next. It is demonstrated that the proposed methodology produces results comparable with finite element method without the need for manual refinement or any human intervention. In the last case, generality of the proposed approach is demonstrated by solving a three‐dimensional Boussinesq's problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.