Abstract

This paper is devoted to investigating the synchronization of fractional-order output-coupling multiplex networks (FOOCMNs). Firstly, a type of fractional-order multiplex network is introduced, where the intra-layer coupling and the inter-layer coupling are described separately, and nodes communicate with each other by their outputs, which is more realistic when the node states are unmeasured. By using the Lyapunov method and the fractional differential inequality, sufficient conditions are provided for achieving asymptotic synchronization based on the designed adaptive control, where the synchronized state of each layer is different. Furthermore, a quantized adaptive controller is developed to realize the synchronization of FOOCMNs, which effectively reduces signal transmission frequency and improves the effective utilization rate of network resources. Two numerical examples are given at last to support the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.