Abstract

The conventional linear digital control fails to provide precise positioning of a control object under the influence of static friction, Coulomb friction and backlash. This paper presents an adaptive pulse width control (PWC) scheme. This scheme is developed based on the relationship between the displacement of a control object due to a single pulse input and the pulse width. The coefficient appearing in this relationship is estimated by a parameter adaptation algorithm. Sufficient conditions for asymtotic stability of this adaptive scheme is developed using Popov hyperstability theorem. This adaptive PWC is tested on a laboratory positioning table and is shown to be effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.