Abstract

In this article, we investigate the application of pseudo‐transient‐continuation (PTC) schemes for the numerical solution of semilinear elliptic partial differential equations, with possible singular perturbations. We will outline a residual reduction analysis within the framework of general Hilbert spaces, and, subsequently, use the PTC‐methodology in the context of finite element discretizations of semilinear boundary value problems. Our approach combines both a prediction‐type PTC‐method (for infinite dimensional problems) and an adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully adaptive PTC ‐Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2005–2022, 2017

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.