Abstract
We consider the problem of detecting object contours in natural images. In many cases, local luminance changes turn out to be stronger in textured areas than on object contours. Therefore, local edge features, which only look at a small neighborhood of each pixel, cannot be reliable indicators of the presence of a contour, and some global analysis is needed. We introduce a new morphological operator, called adaptive pseudo-dilation (APD), which uses context dependent structuring elements in order to identify long curvilinear structure in the edge map. We show that grouping edge pixels as the connected components of the output of APD results in a good agreement with the gestalt law of good continuation. The novelty of this operator is that dilation is limited to the Voronoi cell of each edge pixel. An efficient implementation of APD is presented. The grouping algorithm is then embedded in a multithreshold contour detector. At each threshold level, small groups of edges are removed, and contours are completed by means of a generalized reconstruction from markers. The use of different thresholds makes the algorithm much less sensitive to the values of the input parameters. Both qualitative and quantitative comparison with existing approaches prove the superiority of the proposed contour detector in terms of larger amount of suppressed texture and more effective detection of low-contrast contours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.