Abstract

We consider the adaptive beamforming or adaptive detection problem in the case of signal contaminated training samples, i.e., when the latter may contain a signal-like component. Since this results in a significant degradation of the signal to interference and noise ratio at the output of the adaptive filter, we investigate a scheme to jointly detect the contaminated samples and subsequently take this information into account for estimation of the disturbance covariance matrix. Towards this end, a Bayesian model is proposed, parameterized by binary variables indicating the presence/absence of signal-like components in the training samples. These variables, together with the signal amplitudes and the disturbance covariance matrix are jointly estimated using a minimum mean-square error (MMSE) approach. Two strategies are proposed to implement the MMSE estimator. First, a stochastic Markov Chain Monte Carlo method is presented based on Gibbs sampling. Then a computationally more efficient scheme based on variational Bayesian analysis is proposed. Numerical simulations attest to the improvement achieved by this method compared to conventional methods such as diagonal loading. A successful application to real radar data is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.