Abstract

Under the Gaussian noise assumption, the probability hypothesis density (PHD) filter represents a promising tool for tracking a group of moving targets with a time-varying number. However, inaccurate prior statistics of the random noise will degrade the performance of the PHD filter in many practical applications. This paper presents an adaptive Gaussian mixture PHD (AGM-PHD) filter for the multi-target tracking (MTT) problem in the scenario where both the mean and covariance of measurement noise sequences are unknown. The conventional PHD filters are extended to jointly estimate both the multi-target state and the aforementioned measurement noise statistics. In particular, the Normal-inverse-Wishart and Gaussian distributions are first integrated to represent the joint posterior intensity by transforming the measurement model into a new formulation. Then, the updating rule for the hyperparameters of the model is derived in closed form based on variational Bayesian (VB) approximation and Bayesian conjugate prior heuristics. Finally, the dynamic system state and the noise statistics are updated sequentially in an iterative manner. Simulations results with both constant velocity and constant turn model demonstrate that the AGM-PHD filter achieves comparable performance as the ideal PHD filter with true measurement noise statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.