Abstract
In acute hypotension, an automated drug infusion system to control mean arterial blood pressure (MAP) has not been previously studied, though many investigations have examined the use of vasodilating drugs to control MAP in postoperative hypertension. Therefore, we examined an automated control of MAP during acute hypotension using a neural network (NN) approach. A proportional-integral-derivative (PID) control, an adaptive predictive control using a NN (APC(NN)), a combined control of APC(NN) and PID (APC(NN-PID)), a fuzzy control, and a model predictive control were tested in computer simulation based on the MAP response to norepinephrine (NE) of 25 microg ml(-1). In six anesthetized rabbits, using the NE of 25 microg ml(-1), the PID control, APC(NN), and APC(NN-PID) prevented severe hypotension compared to an uncontrolled condition. Under PID control, four of the six animals showed MAP oscillation. Using NE of 50 microg ml(-1), the rabbits recovered from acute hypotension for all systems tested but showed sustained MAP oscillation during PID control. In conclusion, utilization of a NN for adaptive predictive control systems could facilitate the development of an automated drug infusion apparatus because it provides robust control even when acute or large perturbations and inter-individual differences in the sensitivity to therapeutic agents occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.