Abstract
Aiming at the problem that the tracking accuracy of unmanned vehicle path tracking preview control is greatly affected by the preview time, a BP neural network adaptive preview control method is proposed. Considering that the prediction effect of the BP neural network is limited to the initial value setting, a preview time adjuster based on the SSA-BP neural network was established; by establishing the relationship between the front wheel steering angle and the preview time, a new direction control driver model was formed. The driver model and the preview time adjuster together constitute an adaptive steering controller. In order to solve the influence of the longitudinal speed change on the vehicle stability, a PID variable-speed controller was designed to realize the horizontal and vertical coordinated control of the path tracking of the unmanned vehicle. Compared with the fixed preview time and the BP preview time control method, the results show that the proposed method has strong tracking ability when driving at various speeds on three consecutive curves and Alt 3 test roads, and can be used when driving at a variable speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: World Electric Vehicle Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.