Abstract

In this paper, we present an adaptive power manager for solar energy harvesting sensor nodes. We use a simplified model consisting of a solar panel, an ideal battery and a general sensor node with variable duty cycle. Our power manager uses Reinforcement Learning (RL), specifically SARSA(λ) learning, to train itself from historical data. Once trained, we show that our power manager is capable of adapting to changes in weather, climate, device parameters and battery degradation while ensuring near-optimal performance without depleting or overcharging its battery. Our approach uses a simple but novel general reward function and leverages the use of weather forecast data to enhance performance. We show that our method achieves near perfect energy neutral operation (ENO) with less than 6% root mean square deviation from ENO as compared to more than 23% deviation that occur when using other approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.