Abstract

Recently, there has been great interest in the integration of dispersed generation units at the distribution level. This requires new analysis tools for understanding system performance. This paper presents an adaptive distributed power flow solution method based on the compensation-based method. The comprehensive distributed system model includes three-phase nonlinear loads, lines, capacitors, transformers, and dispersed generation units. The numerical properties of the compensation-based power flow method are compared and analyzed under different situations, such as load unbalance, sudden increase of one-phase loads, degree of meshed loops, number of generator nodes and so on. Based on these analyses, an adaptive compensation-based power flow method is proposed that is fast and reliable while maintaining necessary accuracy. It is illustrated that this adaptive method is especially appropriate for simulation of slow dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.