Abstract

1. This study demonstrates the influence of experience on the establishment and maintenance of the auditory map of space in the optic tectum of the barn owl. Auditory experience was altered either by preventing the structures of the external ears (the facial ruff and preaural flaps) from appearing in baby barn owls (baby ruff-cut owls) or by removing these structures in adults (adult ruff-cut owls). These structures shape the binaural cues used for localizing sounds in both the horizontal and vertical dimensions. 2. The acoustic effects of removing the external ear structures were measured using probe tube microphones placed in the ear canals. In both baby and adult ruff-cut owls, the spatial pattern of binaural localization cues was dramatically different from normal: interaural level difference (ILD) changed with azimuth instead of with elevation, the rate of change of ILD across space was decreased relative to normal, and the rate of change of interaural time difference (ITD) across frontal space was increased relative to normal. 3. The neurophysiological representations of ITD and ILD in the optic tectum were measured before and > or = 3 mo after ruff removal in adults and beginning at 4.5 months of age in baby ruff-cut owls. Multiunit tuning to ITD and to ILD was measured using dichotic stimulation in ketamine-anesthetized owls. The tectal maps of ITD and ILD were reconstructed using visual receptive field location as a marker for recording site location in the optic tectum. 4. Adjustment of the tectal map of ITD to the altered spatial pattern of acoustic ITD was essentially complete in adults as well as in baby ruff-cut owls. This adjustment changed the magnification of ITD across the tectum, with resultant changes in ITD tuning at individual tectal sites of up to approximately 25 microseconds (approximately 5% of the physiological range) relative to normal values. 5. Adaptation of the tectal ILD map to the ruff-cut spatial pattern of acoustic ILD was substantial but clearly incomplete in both adult and baby ruff-cut owls. Although changes of up to approximately 15 dB (approximately 47% of the physiological range) relative to normal tuning were observed at certain tectal sites, the topography of the ILD map was always intermediate between normal and that predicted by the ruff-cut spatial pattern of acoustic ILD.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call