Abstract

Chaotic theory has been used in cryptography application for generating a sequence of data that is close to pseudorandom number based on an adjusted initial condition and a parameter. However, data recovery becomes a crucial problem due to the precision of the parameters. This difficulty leads to limited usage of Chaotic-based cryptography especially for error sensitive applications such as voice cryptography. In order to enhance the encryption security and overcome this limitation, an Adaptive Pixel-Selection using Chaotic Map Lattices (APCML) is proposed. In APCML, the encryption sequence has been adaptively selected based on chaos generator. Moreover, the chaotic transformation and normalization boundary have been revised to alleviate the rounding error and inappropriate normalization boundary problems. In the experiments, the measurement indices of originality preservation, visual inspection, and statistical analysis are used to evaluate the performance of the proposed APCML compared to that of the original CML. Consequently, the APCML algorithm offers greater performance with full recovery of the original message.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.