Abstract

As local traffic congestion and uncertainty factors existing on roads may lead to cascading failures or even large area traffic network congestion, a pinning control method is proposed to divert the traffic and then restore the smooth flow of traffic. To eliminate the impacts of uncertainties and negative weights for the traffic network performance, the adaptive pinning control and coupling adjustment strategies are designed to estimate controller parameters and adjust coupling strength to compensate for the impacts on the pinned nodes and unpinned nodes. Based on Lyapunov stability theory, adaptive pinning controllers and network adjusters are developed to guarantee the achievement of network synchronization even in the presence of the uncertainties and negative weights. In addition, we investigate the effects of the type of nodes on pinning synchronization performance. Numerical simulations show that if the network’s degree and the single node energy index are considered, better synchronization performance can be obtained by comparing with the pervious pinning schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.