Abstract

The present research produces a new technique for the optimum operation of an isolated microgrid (MGD) based on an enhanced block-sparse adaptive Bayesian algorithm (EBSABA). To update the proportional-integral (PI) controller gains online, the suggested approach considers the impact of the actuating error signal as well as its magnitude. To reach a compromise result between the various purposes, the Response Surface Methodology (RSMT) is combined with the sunflower optimization (SFO) and particle swarm optimization (PSO) algorithms. To demonstrate the success of the novel approach, a benchmark MGD is evaluated in three different Incidents: (1) removing the MGD from the utility (islanding mode); (2) load variations under islanding mode; and (3) a three-phase fault under islanding mode. Extensive simulations are run to test the new technique using the PSCAD/EMTDC program. The validity of the proposed optimizer is demonstrated by comparing its results with those obtained using the least mean and square root of exponential method (LMSRE) based adaptive control, SFO, and PSO methodologies. The study demonstrates the superiority of the proposed EBSABA over the LMSRE, SFO, and PSO approaches in the system’s transient reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.