Abstract
The improvement of reliable health monitoring system for liquid-propellant rocket engines (LREs) is a crucial part for reusable launch vehicle, which contributes to providing competitive and cost-effective propulsion systems. Thus, it accentuates the need for reliable and quick health stage assessment of system and follow-up damage-mitigating control. In this paper, we propose a novel adaptive physics-encoded graph neural network for health stage assessment of LREs. Our approach embeds the relations of different sensors obtained through expert experience, which contributes to constructing a physical graph layer. To better capture the information contained in all the sensor data, a novel convolutional layer of adaptive auto-regressive moving average filters is designed, which considers the personalized information propagation needs of each neural network layer. The performance of the proposed method is quantified with data obtained from physics simulations and real-world engineering systems. The results show that our model has potential applicability for the health stage assessment of LREs with high accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.