Abstract

BackgroundPhenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species.ResultsWe performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance.ConclusionsThe pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated - among other traits - between Midas Cichlid species, its plasticity might be an important factor in Midas Cichlid speciation. The prevalence of pharyngeal jaw differentiation across the Cichlidae further suggests that adaptive phenotypic plasticity in this trait could play an important role in cichlid speciation in general. We discuss several possibilities how the adaptive radiation of Midas Cichlids might have been influenced in this respect.

Highlights

  • Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology

  • Our study finds that diet can induce changes on the trophic apparatus of the Midas cichlids, and that this changes are related to the mechanical stimulation of the jaws

  • Geometric morphometric analyses The shape of the lower pharyngeal jaw differed significantly between the fish raised on a diet ‘with shell’ and the other two groups of fish as revealed by permutation testing of Procrustes distances (Table 1)

Read more

Summary

Introduction

Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. Adaptive phenotypic plasticity might play a key role allowing populations to enter the ‘realm of attraction’ of a new adaptive peak, in which genetic assimilation occurs through directional selection favoring genotypes that produce even more extreme phenotypes than what would be possible by plastic response of the ancestral genotype alone [16,17]. Baldwin discussed this topic already in 1896 and described it as ‘a new factor in evolution’ [18,19]. Not many investigations of phenotypic plasticity in model systems for speciation research, such as cichlid fishes, have been attempted (but see [29,30,31,32,33])

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call