Abstract

We present an adaptive technique for compensating manufacturing and environmental variability in subthreshold circuits using “canary flip-flop (FF),” which can predict timing errors. A 32-bit Kogge-Stone adder whose performance was controlled by body-biasing was fabricated in a 65-nm CMOS process. Measurement results show that the adaptive control can compensate process, supply voltage, and temperature variations and improve the energy efficiency of subthreshold circuits by up to 46% compared to worst-case design and operation with guardbanding. We also discuss how to determine design parameters, such as the inserted location and the buffer delay of the canary FF, supposing two approaches: configuration in the design phase and post-silicon tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.