Abstract

To evaluate trends in the osmoregulatory behavior of neotropical, palaemonid shrimps, we investigated osmotic and ionic regulatory patterns in five species of Palaemon or Macrobrachium. The species’ life histories depend on saline water to differing degrees, their habitats ranging from the marine/intertidal ( P. northropi), through estuaries ( P. pandaliformis) to coastal, freshwater streams ( M. olfersii, M. potiuna) and inland, continental river systems ( M. brasiliense). Hemolymph osmolality, chloride, sodium and magnesium concentrations were measured in shrimps exposed to experimental media ranging from fresh water (<0.5‰) to concentrated seawater (42‰) for up to 10 days. The marine and estuarine Palaemon species exhibit well-developed hyper/hypo-osmotic, sodium and chloride regulatory capabilities in mid-range salinities, tending to hyperconform in low salinities. The freshwater Macrobrachium species show variable hyperosmotic, sodium and chloride regulatory capacities, tending to hypoconform or unable to survive at higher salinities. All species hyper-regulate magnesium in fresh water, but hyporegulate strongly in saline media. Palaemonids from the saline habitats show the strongest osmoregulatory capabilities, and fresh water may have been gradually invaded by ancestral species with similar regulatory capacity. However, this regulatory plasticity has been lost to varying degrees in extant freshwater species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.