Abstract

The ability of females to adaptively influence offspring phenotype via maternal effects is widely acknowledged, but corresponding nongenetic paternal effects remain unexplored. Males can adjust sperm phenotype in response to local conditions, but the transgenerational consequences of this plasticity are unknown. We manipulated paternal density of a broadcast spawner (Styela plicata, a solitary ascidean) using methods shown previously to alter sperm phenotype in the field, then conducted in vitro fertilizations that excluded maternal effects and estimated offspring performance under natural conditions. Offspring sired by males from low-density experimental populations developed faster and had a higher hatching success than offspring sired by males living in high densities. In the field, offspring survived relatively better when their environment matched their father's, raising the possibility that fathers can adaptively influence the phenotype of their offspring according to local conditions. As the only difference between offspring is whether they were artificially fertilized by sperm from males kept in high- vs. low-density cages, we can unequivocally attribute any differences in offspring performance to an environmentally induced paternal effect. Males of many species manipulate the phenotype of their sperm in response to sperm competition: our results show this plasticity can influence offspring fitness, potentially in adaptive ways, raising the possibility that adaptive nongenetic paternal effects may be more common than previously thought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call