Abstract

AbstractSwarm-diversity is an important factor influencing the global convergence of particle swarm optimization (PSO). In order to overcome the premature convergence, the paper introduced a negative feedback mechanism into particle swarm optimization and developed an adaptive PSO. The improved method takes advantage of the swarm-diversity to control the tuning of the inertia weight (PSO-DCIW), which in turn can adjust the swarm-diversity adaptively and contribute to a successful global search. The proposed PSO-DCIW was applied to some well-known benchmarks and compared with the other notable improved methods for PSO. The relative experimental results show PSO-DCIW is a robust global optimization method for the complex multimodal functions, which can improve the performance of the standard PSO and alleviate the premature convergence validly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.