Abstract

AbstractMachining is very common in industry, e.g. automotive industry and aerospace industry, which is a nonlinear dynamic problem including large deformations, large strain, large strain rates and high temperatures, that implies some difficulties for numerical methods such as Finite element method. One way to simulate such kind of problems is the Particle Finite Element Method (PFEM) which combines the advantages of continuum mechanics and discrete modeling techniques. In this work we introduce an improved PFEM called the Adaptive Particle Finite Element Method (A‐PFEM). The A‐PFEM introduces particles and removes wrong elements along the numerical simulation to improve accuracy, precision, decrease computing time and resolve the phenomena that take place in machining in multiple scales. At the end of this paper, some examples are present to show the performance of the A‐PFEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.