Abstract

An extension is presented to the recently introduced genetic algorithm-embedded quaternion particle filter. Belonging to the class ofMonte Carlo sequential methods, the genetic algorithm-embedded quaternion particle filter is an estimator that uses approximate numerical representation techniques for performing the otherwise exact time propagation and measurement update of potentially non-Gaussian probability density functions in the inherently nonlinear attitude estimation problem. The spacecraft attitude is represented via the quaternion of rotation, and a genetic algorithm is used to estimate the gyrobiases, allowing one to estimate just the quaternion via the particlefilter. An adaptive version of the genetic algorithm-embedded quaternion particle filter is presented herein that extends the applicability of this filter to problems with highly uncertain measurement noise distributions. The adaptive algorithm estimates themeasurement noise distribution on the fly, alongwith the spacecraft attitude and gyro biases. A simulation study is used to demonstrate the performance of the adaptive algorithm using real data obtained from the Technion’s TechSAT satellite, whose three-axis magnetometer’s data are non-Gaussian. The simulation, which compares the performance of the filter to the nonadaptive genetic algorithm-embedded quaternion particle filter, demonstrates the viability of the new algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.