Abstract

With the aim of economy improvement, emission reduction and prolonging the battery service life, an adaptive parameter optimal energy management strategy is proposed for range extended electric vehicle and a method of multi-objective optimization (MOO) is proposed. Firstly, two strategies based on different threshold parameter types, namely velocity-switch-based multi-operation-point control strategy (MCS v–b) and power-switch-based multi-operation-point control strategy (MCS p–b) are designed. Then, the oil-electric conversion loss rate, comprehensive exhaust emission, and battery capacity loss rate are selected as the optimization objectives. The barebones multi-objective particle swarm optimization is applied in MCS v–b and MCS p–b for solving the MOO problem. The simulation results show a clear conflict that three optimization objectives cannot be optimal under the same solution. And then, the individual with optimal comprehensive objective is taken as the final optimization solution to evaluate the performance of the proposed methodology. As expected, the proposed MCS p–b has a positive effect on prolonging the battery service life while ensuring high fuel economy and low emission. Experimental test results thoroughly validate the proposed approach and this result can be used to improve comprehensive performance levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call