Abstract

In this paper, the design of a time-efficient and processor-efficient parallel algorithm for the integral knapsack problem is considered. A parallel integral knapsack algorithm is presented, which is adaptive to all parameters, especially to the maximum size of items. The parallel complexity of another important packing problem, the integral exactly-packing problem, is also considered. An optimal O(log n log m) time, parallel integral exactly-packing algorithm is given. Since the partition problem has a constant time, constant processor reduction to the exactly-packing problem, our parallel integral exactly-packing algorithm can be used for job scheduling, task partition, and many other important practical problems. Moreover, the methods and techniques used in this paper can be used for developing processor-efficient and time-efficient parallel algorithms for many other problems. Using the new parallel integral knapsack algorithm, the previously known parallel approximation schemes for the 0–1 knapsack problem and the binpacking problem, by E. W. Mayr and P. S. Gopalkrishnan, are improved upon significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call