Abstract

This paper is concerned with the problem of adaptive fuzzy tracking control via output feedback for a class of uncertain single-input single-output (SISO) strict-feedback nonlinear systems. The dynamic feedback strategy begins with an input-driven filter. By utilizing fuzzy logic systems to approximate unknown and desired control input signals directly instead of the unknown nonlinear functions, an output-feedback fuzzy tracking controller is designed via a backstepping approach. It is shown that the proposed fuzzy adaptive output controller can guarantee that all the signals remain bounded and that the tracking error converges to a small neighborhood of the origin. Simulations results are presented to demonstrate the effectiveness of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.